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Simple Summary: In Italy, buffalo milk is mainly transformed into ‘Mozzarella di Bufala Campana’,
a Protected Designation of Origin (PDO) cheese. A quick method for predicting the coagulation
properties of the milk before cheese production could enhance the efficiency of the industry. Therefore,
the aim of this paper was to evaluate the potential use of mid-infrared spectroscopy to predict milk
coagulation traits in bulk milk from Mediterranean Italian buffaloes. A total of 1736 bulk milk samples
from 55 farms in central Italy were analyzed. Prediction models using mid-infrared spectroscopy
were built with a modified partial least-squares regression using an external validation dataset. The
best prediction model was obtained for curd firmness, but it was still inaccurate enough to replace
traditional methods.

Abstract: This study evaluated the potential use of mid-infrared spectroscopy to predict milk coagula-
tion traits in bulk milk from Mediterranean Italian buffaloes. A total of 1736 bulk milk samples from
55 farms in central Italy were collected during the official milk quality testing system. The prediction
models were developed based on modified partial least-squares regression with 75% of the samples
and validated with the remaining samples. All bulk milk samples coagulated between 7.37 and
29.45 min. Average values for milk coagulation traits in the calibration set were 17.71 min, 3.29 min,
and 38.83 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. The val-
idation set included samples with similar mean and standard deviation for each trait. The prediction
models showed the greatest coefficient of determination of external validation (0.57) and the ratio of
prediction to deviation (1.52) for curd firmness. Similar fitting statistics of the prediction models were
obtained for rennet coagulation time and curd firming time. In conclusion, the prediction models for
all three coagulation traits were below the threshold to consider the prediction models adequate even
for rough screening of the samples.

Keywords: mid-infrared spectroscopy; bulk buffalo milk; technological properties

1. Introduction

Water buffalo are rustic, long-living animals (with up to 20 years of productive life)
that produce, on average, between 600 and 4500 L of milk per lactation [1]. Compared
to cow milk, buffalo milk presents greater fat, protein, casein, lactose, minerals, and total
solids [1,2] and has additional health benefits due to their anti-inflammatory, antioxidant,
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and anticarcinogenic properties [1]. India has the largest water buffalo (Bubalus bubalis)
population in the world, accounting for 55% of the global population and producing
71% of total buffalo milk [3]. On the other hand, Italy is the largest producing European
country in terms of animal, milk, and cheese production, accounting for 86%, 88%, and
57%, respectively, within the European Union [3]. Moreover, Italy is the second biggest
buffalo cheese manufacturer worldwide after Egypt [3]. In the Italian dairy industry,
the assessment of buffalo milk coagulation properties is of utmost importance as it is
predominantly transformed into ‘Mozzarella di Bufala Campana’ Protected Designation of
Origin (PDO), where Campania and Lazio regions concentrate 90% of Italian buffalos [1].
Other buffalo milk- and whey-cheeses such as ‘burrata di bufala’ and ‘buffalo ricotta” are
also produced [1].

The Formagraph mechanical system is commonly used to determine milk coagulation
properties, including milk rennet coagulation time (RCT), curd firming time (kpg), and
curd firmness 30 min after rennet addition to milk (a3g) [4]. However, this method cannot
be used as a process of analytical control and monitoring of milk rennetability because
it is time-consuming and allows only for a few samples to be analyzed within 1 h. On
the other hand, mid-infrared (MIR) spectroscopy is commonly used to predict milk gross
composition during the official milk controls, including fat, protein, casein, and lactose. It
also gives the possibility to record the spectra obtained to apply future prediction models.
This technique is cost-effective and easy to use, allowing for rapid determination of multiple
parameters. Recently, MIR has also been used as an authentication method to detect buffalo
milk adulteration with high accuracy to distinguish it from cow milk [5-7].

Studies conducted with the individual milk of goats [8] and sheep [9] and with bulk
milk from cow herds [10] have revealed the low accuracy of the prediction models for milk
coagulation properties. To our knowledge, only one study conducted in 2017 has focused
on its applicability to predict the coagulation properties of individual milk samples [11].
This study collected individual samples from a single milking, taking into consideration
the individual variability of the traits, including detecting samples that do not coagulate
within 30 min of the coagulation analysis [11]. Despite the MIR prediction models revealing
a low predictive ability for RCT, kyg, and a3, it correctly identified the noncoagulating
samples [11]. However, the milk payment system is based on bulk milk that includes the
complete milk production of a herd from two milkings to be representative of the daily
milk production and not individual samples. Thus, it is necessary to confirm the results
obtained with individual milk.

Therefore, this study aimed to evaluate the feasibility of MIR spectroscopy for predict-
ing coagulation properties (RCT, kyg, and azp) of water buffalo bulk milk.

2. Materials and Methods
2.1. Bulk Milk Sampling and Analysis

A total of 1736 bulk milk samples (60 mL without preservative) of Mediterranean
Italian buffaloes were collected from 55 farms located in the Lazio region of central Italy
between 2021 and 2023. This is the area of Mozzarella di Bufala Campana PDO. Bulk milk
samples were obtained from 2 consecutive milkings (morning and evening) and trans-
ported refrigerated (4 °C). They were analyzed within 36 h of collection at the quality milk
laboratory Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”
(Rome, Italy), which is accredited by Accredia, the Italian Accreditation Body (Labora-
tory number 0201A), and follows International Organization for Standardization ISO/IEC
17025:2017. Milk chemical composition (i.e., fat, protein, casein, and lactose content) was
determined with MilkoScan™ 7 RM (Foss Analytical A/S, Hillered, Denmark), which is
calibrated with appropriate buffalo standards. The somatic cell count (SCC) was assessed
with a Fossomatic FC system (Foss Electric, Hillerod, Denmark).

The reference values for milk coagulation traits (RCT, kpg, and a3g) were obtained
using a Formagraph LDG 2.0 (Ma.Pe System srl, Firenze, Italy). To obtain these values, milk
samples (10 mL) were initially heated to 36 °C, and 200 uL of calf rennet (comprising 75%
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chymosin and 25% pepsin, 175 international milk clotting units/mL,; Clerici s.p.s., Sacco srl,
Cadorago, Italy) diluted to a concentration of 1% (wt/wt) in distilled water were added.
Measurement concluded 30 min after the enzyme addition.

2.2. Chemometric Analysis

Spectral information of bulk milk collected during the gross composition determina-
tion using the MilkoScan™ 7 RM (Foss Electric, Hillerad, Denmark) was recorded as a log
(1/Transmittance). The instrument works within the range of 5000 to 900 cm ™!, providing
1060 data points. To develop the prediction models, the spectral information was matched
with reference values for milk coagulation traits. Prediction models were built with WinISI
4 software (Infrasoft International, Port Matilda, PA) through modified partial least-squares
regression analysis (mPLS) [12] after removing the noisy areas related to water (1566 to
1712 em~1; 1817 to 2696 cm~1; 2975 to 500 cm~—!. The mPLS is considered more accurate
than the PLS and the standard method to develop the prediction models with WinISI
software [13]. Any spectral outliers were removed based on the Mahalanobis distance
(Global H > 3.0), followed by 3 rounds of chemical outliers’ elimination using the T-statistic
(T > 3.0). Moreover, 58 milk samples (3.38%) did not clot within the 30-min test period and
were also discarded from the chemometric analysis. The raw spectra were then subjected
to several scatter corrections (D, detrending; SNV, standard normal variate; SNV+D; MSC,
multiplicative scatter correction) to reduce noise and remove imperfections combined with
mathematical treatments (0,0,1,1; 1,4/4,1; 1,8,8,1; 2,5,5,1; 2,10,10,1; where the first digit
is the number of the derivative, the second one is the gap over which the derivative is
calculated, the third one is the number of data points in the first smoothing, and the fourth
one is the number of data points in the second smoothing) [14]. In more detail, scatter is
a nonlinear function that can distort the relationship between the NIR spectrum and the
reference value. In WinlSI software, five options are available: SNV scales each spectrum
to have a standard deviation of 1.0 to help reduce the effects of particle size. Detrending
removes the linear and quadratic curvature of each spectrum. The SNV+D allows us to
evaluate SNV and D together. The MSC uses a correction for mean and standardization at
each wavelength. These five methods are the most widely used and efficient for testing to
improve calibration accuracy.

The dataset was then split into a calibration set (75% of the observations) and a
validation (25% of the observations) set using a random selection method to ensure similar
mean and standard deviation (SD) values for each trait across both sets. Calibration models
were developed using an iterative 15-fold cross-validation and then tested in the validation
set. The performance of the prediction models was assessed using the number of latent
factors (LF), the standard error of cross-validation (SEC), the coefficient of determination in
cross-validation (R2cyv), the standard error in external validation (SEP), the coefficient of
determination in external validation (R?g,y) and the residual prediction deviation (RPD),
the bias, and the slope. The RPD was calculated as the dataset’s SD divided by the SEP,
and the bias was calculated as the difference between the predicted and the reference data.
The SEP is considered a true indication of the performance of the equation on unknown
samples from the same population [15]. The interpretation of R?> and RPD were as follows:
equations with R%g,v < 0.66 and RPD < 0.75 are not recommended, R?g,y between 0.66 and
0.81 and RPD between 1.7 and 2.2 are adequate for screening proposes, R?g,y between 0.83
and 0.90 and RPD between 2.3 and 3.5 should be used with caution, R2,y between 0.92
and 0.96 and RPD between 3.6 and 4.9 are adequate for most applications, and R?g,y > 0.98
and RPD > 5.0 are adequate for any application [16]. Bias should be closer to 0 and slope
closer to 1.

3. Results and Discussion
3.1. Descriptive Statistics

Table 1 displays the characteristics of both the calibration and validation datasets. Both
datasets have comparable means and SD and cover a similar range for all the analyzed
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traits, which is important for developing reliable infrared calibration models [17]. The
chemical composition of the evaluated milk samples was consistent with previous studies
in the same area with bulk [4] and individual [11] buffalo milk. Moreover, these results are
in line with a comprehensive review of the nutritional value and technological properties
of milk from several dairy species, including buffalo [18].

Table 1. Descriptive statistics ! of milk coagulation traits and chemical composition in calibration
and validation sets for Mediterranean buffalo bulk milk.

Trait 2 N Mean SD CvV Minimum Maximum
Calibration set
RCT, min 1259 17.71 3.75 21.18 7.37 29.45
koo, min 1168 3.29 1.14 34.52 0.37 7.15
agp, mm 1260 38.83 14.01 36.09 0.98 70.20
Fat, % 1281 7.87 1.19 15.08 3.99 11.86
Protein, % 1302 4.64 0.35 7.64 3.15 7.53
Casein, % 1296 3.68 0.36 9.83 2.54 4.89
Lactose, % 696 4.64 0.18 3.87 3.69 5.18
SCC, cell/uL 1302 181.54 274.08 150.98 11.00 3486.00
Validation set
RCT, min 419 17.71 3.71 20.94 8.00 29.30
kop, min 389 3.31 1.13 34.05 1.15 7.15
agp, mm 420 38.92 13.96 35.86 2.00 73.84
Fat, % 426 7.87 1.17 14.92 4.19 11.75
Protein, % 434 4.64 0.37 7.89 3.57 7.53
Casein, % 431 3.68 0.36 9.72 2.63 4.81
Lactose, % 231 4.64 0.17 3.70 4.03 5.06
SCC, cell/uL 433 178.07 251.58 141.28 16.00 2734.00

18D, Standard Deviation; CV, Coefficient of Variation. 2 RCT, Rennet Coagulation Time; kyg, curd-firming time;
agp, curd firmness at 30 min after rennet addition to milk; SCC, somatic cells count.

The 3.38% of the samples did not coagulate within the analysis. Other authors have
also reported a greater presence of noncoagulating samples when dealing with individual
milk from buffalo (16.9%) [11], sheep (12.9%) [9], and goats (7.9%) [8]. Regarding buffalo
milk coagulation properties (Table 1), a previous study reported a shorter RCT (13.14 min)
but a longer ky( (4.89 min) with a thicker a3y (48.32 mm) in bulk milk [4]. In individual
buffalo milk samples, the same authors reported similar kyg (3.17 min) and az (39.52 mm)
but a shorter RCT (13.33 min) [11]. Nevertheless, the current results for milk coagulation
traits were within the range reported by these two previous studies [4,11]. On the other
hand, other authors have reported a shorter RCT (8.46 min) and kpp (0.98 min) but a thicker
azp (41.32 mm) with individual buffalo milk [19].

3.2. Prediction Models Performance

Figure 1 shows the average raw spectrum of the milk sample. This spectrum is similar
to cow [20] and sheep milk spectra [9]. The peak observed around 1045 cm ! corresponds
to the C-O stretching vibration of alcohol functions, at 1076 cm~! to C-0, C-C, and C-H
stretching vibration, and 1157 and 1250 cm ™! with C-O-C ether stretching [20]. It has been
described that these peaks are related to lactose content [20]. Peaks around 1550 cm !
correspond to C-N and N-N stretching, which is linked to protein content [20]. Peaks
around 1390 and 1454 cm ™! correspond to C-H bending of —CHj3 and —CHj, around 2862
and 2927 cm~! to C-H stretching of —CH3 and —CHy, and around 1743 cm ! to the C=0
ester stretching [20]. It has been described that these peaks are related to fat content [20].



Foods 2024, 13, 1957 50f8
F
L i
0.6 F
L|L F
m
o 05
g
& F
.4504 L
wn
c 03
IS
—
£ 02
A
N
o0
0 0.1
p—
)
3 0
c
£ 01
o_.
=
£ 02
20
-0.3
AN AN <H OO O O O DNDNOWOWOWO ONO OO = — a1 on
QAW ENORL SN RO SNOaNn AN FSONRTE S YA
IO AN OO AN OO AN 0L = 0 LW —= 0 H —~ 0 <K —~ 00 H — IN <FH — DN <H
NN = O = 10O O QN FHFAAMOWMMINOANINDNAE WO —LW ©LO O FH O n o©
AN O AN MM IHD O 0O ANO AN MID O 0N =& <H IO DN WO —=A <H O DN o
L B T T R e B B o\ B o\ N o I o Il o\ BN o\ Il o\ Il « s N a s N a s NN o TN o O BN a S NS LB S L BIEA S A BIER S LIRS LIRS LI o}

wavenumber, cm!

Figure 1. Mid-infrared average raw spectra of buffalo bulk milk samples. Abbreviations: L, Lactose;
P, Protein; F, Fat.

The percentage of spectral and chemical outliers removed before building the calibra-
tion models was 4.36% for RCT, 6.16% for kg, and 4.84% for azg. Although this proportion
is within the accepted range (<10%), it is greater than the <2% reported previously for
individual buffalo milk samples [11]. Among all the scatter corrections, the best predic-
tion models for RCT and a3y were obtained by applying the SNV correction, whereas the
best prediction model for kyg was achieved with D. Despite testing the first and second
derivatives as mathematical treatments, the best prediction models for kyg and azy were
obtained without mathematical derivation of the raw absorbance. On the other hand, the
best prediction model for RCT was achieved when using the first derivative.

The LF retained for the final calibration models is displayed in Table 2. The ko shows
the lowest number of LF among all the parameters, whereas a3 is the greatest one, reaching
13 LF. The greater number of LF for RCT and a3y indicates that the calibration models
present some difficulties in accurately predicting these parameters [21]. In individual
buffalo milk samples, a greater LF (between 15 and 17) was needed to achieve a similar
prediction performance as the one reported in Table 2 [11]. In cow milk, a greater number of
LF (15 LF) was also selected than reported in Table 2 to achieve a similar performance of the
models in the calibration set [10]. By reducing the number of LF in an infrared prediction
model, the potential for overfitting can be reduced, which can improve the prediction
model’s generalization to new data [22]. Thus, our models could be considered slightly
better than the ones in the literature in terms of overfitting.

The bias of the prediction models was found to be near zero (Table 2). However,
upon examining the slope of the prediction models, it was observed that the models
could be considered less precise at the extreme ends of the range covered, as the slope
deviated £ 0.15 from the unity (0.85-1.15; [21]). Prediction models are considered adequate
when the slope deviation is between 0.95 and 1.05 [23].
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Table 2. Fitting statistics ! of prediction models based on a modified partial least-squares re-
gression for bulk milk coagulation traits ? for Mediterranean buffalo using Fourier-transform
mid-infrared spectroscopy.

Calibration Set Validation Set
. Scatter Mathematical 2 . 2
Trait N Correction Treatment LF SEC Ry N Bias Slope SEP R%gxv RPD
RCT,
min 1204 SNV 1441 11 2.83 0.40 419 0.03 0.92 2.90 0.40 1.29
11;21(; 1096 Detrend 00,11 6 0.82 0.39 389 0.07 1.08 0.88 0.41 1.30
azp, mm 1199 SNV 00,11 13 8.60 0.61 420 0.02 0.93 9.08 0.57 1.52

1IN, number of samples; SNV, standard normal variate; LF = latent factors; SEC = standard error of prediction
of cross-validation; R%cy, coefficient of determination of cross-validation; SEP, standard error of prediction
of external validation; R?g,y = coefficient of determination of external validation; RPD = ratio of prediction to
deviation calculated as the ratio between the standard deviation of the trait and the SEP. 2 RCT, Rennet Coagulation
Time; kyg, curd-firming time; azg, curd firmness at 30 min after rennet addition to milk.

Similar R?c,v and R%g,y were found, indicating that the samples were correctly di-
vided into calibration and validation sets. Among all three milk coagulation traits evaluated,
the best prediction model was built for azg. On the other hand, RCT and ky( performed simi-
larly in terms of R%g,v and RPD; however, the values were below 0.41 and 1.30, respectively.
Based on these statistics, the prediction models were insufficient for their implementation
as R?gyy and RPD were <0.66 and <0.75, respectively [16]. The prediction models were
slightly better than the previous results with individual buffalo milk samples, where the
best model was reached for asy with an R?g,y of 0.35 and RPD of 1.20 [11].

Moreover, these results are consistent with the use of MIR spectroscopy to predict
milk coagulability across different types of milk. For instance, goat milk MIR prediction
models developed with individual milk samples also reported a low R?g,y for all three
traits [8]. While the R?g,y for RCT was similar (0.42) to the one we obtained (Table 2),
their prediction models achieved a lower kyy and a3y (0.29 and 0.27, respectively) [8]. In
individual sheep milk samples, the R’y for RCT was slightly greater (0.39), but the ones
for kyg and asp (0.37 and 0.31, respectively) were lower compared to our results (Table 2) [9].
In cow bulk milk, the prediction models were slightly better using a greater number of LF
(15 LF), reaching an R%cy of 0.65 for RCT, 0.49 for kyg, and 0.68 for az [10].

4. Conclusions

In conclusion, MIR prediction models for coagulation traits in buffalo milk were con-
sistent with previous models created for individual buffalo milk and other milk-producing
animals like cows, sheep, and goats. The developed prediction models for all three milk
coagulation properties slightly improved their accuracy compared with the ones from
individual buffalo milk samples. However, these models were still below the threshold for
the prediction models to be considered adequate even for a rough screening of the samples.
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